Package: demoKde 1.0.1

demoKde: Kernel Density Estimation for Demonstration Purposes

Demonstration code showing how (univariate) kernel density estimates are computed, at least conceptually, and allowing users to experiment with different kernels, should they so wish. The method used follows directly the definition, but gains efficiency by replacing the observations by frequencies in a very fine grid covering the sample range. A canonical reference is B. W. Silverman, (1998) <doi:10.1201/9781315140919>. NOTE: the density function in the stats package uses a more sophisticated method based on the fast Fourier transform and that function should be used if computational efficiency is a prime consideration.

Authors:Bill Venables

demoKde_1.0.1.tar.gz
demoKde_1.0.1.zip(r-4.5)demoKde_1.0.1.zip(r-4.4)demoKde_1.0.1.zip(r-4.3)
demoKde_1.0.1.tgz(r-4.4-any)demoKde_1.0.1.tgz(r-4.3-any)
demoKde_1.0.1.tar.gz(r-4.5-noble)demoKde_1.0.1.tar.gz(r-4.4-noble)
demoKde_1.0.1.tgz(r-4.4-emscripten)demoKde_1.0.1.tgz(r-4.3-emscripten)
demoKde.pdf |demoKde.html
demoKde/json (API)

# Install 'demoKde' in R:
install.packages('demoKde', repos = c('https://billvenables.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 1 packages 3 scripts 707 downloads 13 exports 0 dependencies

Last updated 1 years agofrom:ccb4db51c4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:kdekernelBiweightkernelCosinekernelEpanechnikovkernelGaussiankernelLogistickernelOptCosinekernelRectangularkernelSquaredCosinekernelTriangularkernelTricubekernelTriweightkernelUniform

Dependencies:

Readme and manuals

Help Manual

Help pageTopics
Kernel density estimation demonstration and explorationdemoKde-package demoKde
Univariate kernel density estimation directly in R code.kde
Kernel functions for use with kdekernelBiweight kernelCosine kernelEpanechnikov kernelGaussian kernelLogistic kernelOptCosine kernelRectangular kernelSquaredCosine kernelTriangular kernelTricube kernelTriweight kernelUniform